A domain theory for statistical probabilistic programming
<p>We give an adequate denotational semantics for languages with recursive higher-order types, continuous probability distributions, and soft constraints. These are expressive languages for building Bayesian models of the kinds used in computational statistics and machine learning. Among them...
Asıl Yazarlar: | Vákár, M, Kammar, O, Staton, S |
---|---|
Materyal Türü: | Conference item |
Baskı/Yayın Bilgisi: |
Association for Computing Machinery
2019
|
Benzer Materyaller
-
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
Yazar:: Yang, H, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Commutative semantics for probabilistic programming
Yazar:: Staton, S
Baskı/Yayın Bilgisi: (2017) -
Probabilistic programming with exact conditions
Yazar:: Stein, D, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
A convenient category for higher-order probability theory
Yazar:: Heunen, C, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Compositional semantics for probabilistic programs with exact conditioning
Yazar:: Stein, D, ve diğerleri
Baskı/Yayın Bilgisi: (2021)