Two-gap superconductivity in heavily n-doped graphene: Ab initio Migdal-Eliashberg theory
Graphene is the only member of the carbon family from zero- to three-dimensional materials for which superconductivity has not been observed yet. At this time, it is not clear whether the quest for superconducting graphene is hindered by technical challenges, or else by the fluctuation of the order...
Main Authors: | Margine, E, Giustino, F |
---|---|
格式: | Journal article |
語言: | English |
出版: |
American Physical Society
2014
|
相似書籍
-
Anisotropic Migdal-Eliashberg theory using Wannier functions
由: Margine, E, et al.
出版: (2013) -
Full-bandwidth anisotropic Migdal-Eliashberg theory and its application to superhydrides
由: Roman Lucrezi, et al.
出版: (2024-01-01) -
Superconductivity in CaH $$_{6}$$ 6 and ThH $$_{10}$$ 10 through fully ab initio Eliashberg method and self-consistent Green’s function
由: Alwan Abdillah Darussalam, et al.
出版: (2024-08-01) -
Ab Initio Theory of Photoemission from Graphene
由: Eugene Krasovskii
出版: (2021-05-01) -
Superconductivity in heavily boron-doped silicon carbide
由: Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno
出版: (2008-01-01)