Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR

The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I ∼ 2 × 1014 W · cm−2 ) of a multilayer target generates a shock wave that produces a...

Full description

Bibliographic Details
Main Authors: Gregori, G, Albertazzi, B, Falize, E, Pelka, A, Brack, F, Kroll, F, Yurchak, R, Brambrink, E, Mabey, P, Ozaki, N, Pikuz, S, Van Box Som, L, Bonnet-Bidaud, J, Cross, J, Filippov, E, Kodama, R, Mouchet, M, Morita, T, Sakawa, Y, Drake, R, Kuranz, C, Manuel, M, Li, C, Tzeferacos, P, Lamb, D, Schramm, U, Koenig, M
Format: Journal article
Published: Cambridge University Press 2018
_version_ 1826266323756253184
author Gregori, G
Albertazzi, B
Falize, E
Falize, E
Pelka, A
Brack, F
Kroll, F
Yurchak, R
Brambrink, E
Mabey, P
Ozaki, N
Pikuz, S
Van Box Som, L
Bonnet-Bidaud, J
Cross, J
Filippov, E
Kodama, R
Mouchet, M
Morita, T
Sakawa, Y
Drake, R
Kuranz, C
Manuel, M
Li, C
Tzeferacos, P
Lamb, D
Schramm, U
Koenig, M
author_facet Gregori, G
Albertazzi, B
Falize, E
Falize, E
Pelka, A
Brack, F
Kroll, F
Yurchak, R
Brambrink, E
Mabey, P
Ozaki, N
Pikuz, S
Van Box Som, L
Bonnet-Bidaud, J
Cross, J
Filippov, E
Kodama, R
Mouchet, M
Morita, T
Sakawa, Y
Drake, R
Kuranz, C
Manuel, M
Li, C
Tzeferacos, P
Lamb, D
Schramm, U
Koenig, M
author_sort Gregori, G
collection OXFORD
description The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I ∼ 2 × 1014 W · cm−2 ) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20 ± 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.
first_indexed 2024-03-06T20:37:10Z
format Journal article
id oxford-uuid:330790a1-8e50-4e6d-a2ce-e69c783d6ea7
institution University of Oxford
last_indexed 2024-03-06T20:37:10Z
publishDate 2018
publisher Cambridge University Press
record_format dspace
spelling oxford-uuid:330790a1-8e50-4e6d-a2ce-e69c783d6ea72022-03-26T13:17:48ZExperimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLARJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:330790a1-8e50-4e6d-a2ce-e69c783d6ea7Symplectic Elements at OxfordCambridge University Press2018Gregori, GAlbertazzi, BFalize, EFalize, EPelka, ABrack, FKroll, FYurchak, RBrambrink, EMabey, POzaki, NPikuz, SVan Box Som, LBonnet-Bidaud, JCross, JFilippov, EKodama, RMouchet, MMorita, TSakawa, YDrake, RKuranz, CManuel, MLi, CTzeferacos, PLamb, DSchramm, UKoenig, MThe influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I ∼ 2 × 1014 W · cm−2 ) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20 ± 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.
spellingShingle Gregori, G
Albertazzi, B
Falize, E
Falize, E
Pelka, A
Brack, F
Kroll, F
Yurchak, R
Brambrink, E
Mabey, P
Ozaki, N
Pikuz, S
Van Box Som, L
Bonnet-Bidaud, J
Cross, J
Filippov, E
Kodama, R
Mouchet, M
Morita, T
Sakawa, Y
Drake, R
Kuranz, C
Manuel, M
Li, C
Tzeferacos, P
Lamb, D
Schramm, U
Koenig, M
Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
title Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
title_full Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
title_fullStr Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
title_full_unstemmed Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
title_short Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
title_sort experimental platform for the investigation of magnetized reverse shock dynamics in the context of polar
work_keys_str_mv AT gregorig experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT albertazzib experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT falizee experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT falizee experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT pelkaa experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT brackf experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT krollf experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT yurchakr experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT brambrinke experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT mabeyp experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT ozakin experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT pikuzs experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT vanboxsoml experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT bonnetbidaudj experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT crossj experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT filippove experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT kodamar experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT mouchetm experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT moritat experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT sakaway experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT draker experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT kuranzc experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT manuelm experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT lic experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT tzeferacosp experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT lambd experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT schrammu experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar
AT koenigm experimentalplatformfortheinvestigationofmagnetizedreverseshockdynamicsinthecontextofpolar