Using multiple segmentations to discover objects and their extent in image collections

Given a large dataset of images, we seek to automatically determine the visually similar object and scene classes together with their image segmentation. To achieve this we combine two ideas: (i) that a set of segmented objects can be partitioned into visual object classes using topic discovery mode...

Full description

Bibliographic Details
Main Authors: Russell, BC, Efros, AA, Sivic, J, Freeman, WT, Zisserman, A
Format: Conference item
Language:English
Published: IEEE 2006
Description
Summary:Given a large dataset of images, we seek to automatically determine the visually similar object and scene classes together with their image segmentation. To achieve this we combine two ideas: (i) that a set of segmented objects can be partitioned into visual object classes using topic discovery models from statistical text analysis; and (ii) that visual object classes can be used to assess the accuracy of a segmentation. To tie these ideas together we compute multiple segmentations of each image and then: (i) learn the object classes; and (ii) choose the correct segmentations. We demonstrate that such an algorithm succeeds in automatically discovering many familiar objects in a variety of image datasets, including those from Caltech, MSRC and LabelMe.