Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields
A maximal minor $M$ of the Laplacian of an $n$-vertex Eulerian digraph $\Gamma$ gives rise to a finite group $\mathbb{Z}^{n-1}/\mathbb{Z}^{n-1}M$ known as the sandpile (or critical) group $S(\Gamma)$ of $\Gamma$. We determine $S(\Gamma)$ of the generalized de Bruijn graphs $\Gamma=\mathrm{DB}(n,d)$...
Main Authors: | Chan, S, Hollmann, H, Pasechnik, D |
---|---|
格式: | Journal article |
出版: |
2014
|
相似書籍
-
Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields
由: Chan, SH, et al.
出版: (2014) -
Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields
由: Hong, C, et al.
出版: (2014) -
Circulant matrices and sandpile groups of generalized de Bruijn graphs
由: Chan, S, et al.
出版: (2013) -
Automorphisms of necklaces and sandpile groups
由: Duzhin, S, et al.
出版: (2014) -
Approach to criticality in sandpiles
由: Levine, Lionel, et al.
出版: (2011)