Transcriptome, proteome and draft genome of Euglena gracilis
<strong>Background</strong> Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
BioMed Central
2019
|
_version_ | 1826266393122701312 |
---|---|
author | Ebenezer, T Zoltner, M Burrell, A Nenarokova, A Novák Vanclová, A Prasad, B Soukal, P Santana-Molina, C O'Neill, E Nankissoor, N Vadakedath, N Daiker, V Obado, S Silva-Pereira, S Jackson, A Devos, D Lukeš, J Lebert, M Vaughan, S Hampl, V Carrington, M Ginger, M Dacks, J Kelly, S Field, M |
author_facet | Ebenezer, T Zoltner, M Burrell, A Nenarokova, A Novák Vanclová, A Prasad, B Soukal, P Santana-Molina, C O'Neill, E Nankissoor, N Vadakedath, N Daiker, V Obado, S Silva-Pereira, S Jackson, A Devos, D Lukeš, J Lebert, M Vaughan, S Hampl, V Carrington, M Ginger, M Dacks, J Kelly, S Field, M |
author_sort | Ebenezer, T |
collection | OXFORD |
description | <strong>Background</strong> Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. <br/><br/> <strong>Results</strong> We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. <br/><br/> <strong>Conclusions</strong> Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the ‘shopping bag’ hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition. |
first_indexed | 2024-03-06T20:38:14Z |
format | Journal article |
id | oxford-uuid:335ccde7-143f-4785-8947-da622f0a818a |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T20:38:14Z |
publishDate | 2019 |
publisher | BioMed Central |
record_format | dspace |
spelling | oxford-uuid:335ccde7-143f-4785-8947-da622f0a818a2022-03-26T13:19:52ZTranscriptome, proteome and draft genome of Euglena gracilisJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:335ccde7-143f-4785-8947-da622f0a818aEnglishSymplectic Elements at OxfordBioMed Central2019Ebenezer, TZoltner, MBurrell, ANenarokova, ANovák Vanclová, APrasad, BSoukal, PSantana-Molina, CO'Neill, ENankissoor, NVadakedath, NDaiker, VObado, SSilva-Pereira, SJackson, ADevos, DLukeš, JLebert, MVaughan, SHampl, VCarrington, MGinger, MDacks, JKelly, SField, M<strong>Background</strong> Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. <br/><br/> <strong>Results</strong> We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. <br/><br/> <strong>Conclusions</strong> Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the ‘shopping bag’ hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition. |
spellingShingle | Ebenezer, T Zoltner, M Burrell, A Nenarokova, A Novák Vanclová, A Prasad, B Soukal, P Santana-Molina, C O'Neill, E Nankissoor, N Vadakedath, N Daiker, V Obado, S Silva-Pereira, S Jackson, A Devos, D Lukeš, J Lebert, M Vaughan, S Hampl, V Carrington, M Ginger, M Dacks, J Kelly, S Field, M Transcriptome, proteome and draft genome of Euglena gracilis |
title | Transcriptome, proteome and draft genome of Euglena gracilis |
title_full | Transcriptome, proteome and draft genome of Euglena gracilis |
title_fullStr | Transcriptome, proteome and draft genome of Euglena gracilis |
title_full_unstemmed | Transcriptome, proteome and draft genome of Euglena gracilis |
title_short | Transcriptome, proteome and draft genome of Euglena gracilis |
title_sort | transcriptome proteome and draft genome of euglena gracilis |
work_keys_str_mv | AT ebenezert transcriptomeproteomeanddraftgenomeofeuglenagracilis AT zoltnerm transcriptomeproteomeanddraftgenomeofeuglenagracilis AT burrella transcriptomeproteomeanddraftgenomeofeuglenagracilis AT nenarokovaa transcriptomeproteomeanddraftgenomeofeuglenagracilis AT novakvanclovaa transcriptomeproteomeanddraftgenomeofeuglenagracilis AT prasadb transcriptomeproteomeanddraftgenomeofeuglenagracilis AT soukalp transcriptomeproteomeanddraftgenomeofeuglenagracilis AT santanamolinac transcriptomeproteomeanddraftgenomeofeuglenagracilis AT oneille transcriptomeproteomeanddraftgenomeofeuglenagracilis AT nankissoorn transcriptomeproteomeanddraftgenomeofeuglenagracilis AT vadakedathn transcriptomeproteomeanddraftgenomeofeuglenagracilis AT daikerv transcriptomeproteomeanddraftgenomeofeuglenagracilis AT obados transcriptomeproteomeanddraftgenomeofeuglenagracilis AT silvapereiras transcriptomeproteomeanddraftgenomeofeuglenagracilis AT jacksona transcriptomeproteomeanddraftgenomeofeuglenagracilis AT devosd transcriptomeproteomeanddraftgenomeofeuglenagracilis AT lukesj transcriptomeproteomeanddraftgenomeofeuglenagracilis AT lebertm transcriptomeproteomeanddraftgenomeofeuglenagracilis AT vaughans transcriptomeproteomeanddraftgenomeofeuglenagracilis AT hamplv transcriptomeproteomeanddraftgenomeofeuglenagracilis AT carringtonm transcriptomeproteomeanddraftgenomeofeuglenagracilis AT gingerm transcriptomeproteomeanddraftgenomeofeuglenagracilis AT dacksj transcriptomeproteomeanddraftgenomeofeuglenagracilis AT kellys transcriptomeproteomeanddraftgenomeofeuglenagracilis AT fieldm transcriptomeproteomeanddraftgenomeofeuglenagracilis |