Transcriptome, proteome and draft genome of Euglena gracilis

<strong>Background</strong> Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of...

Full description

Bibliographic Details
Main Authors: Ebenezer, T, Zoltner, M, Burrell, A, Nenarokova, A, Novák Vanclová, A, Prasad, B, Soukal, P, Santana-Molina, C, O'Neill, E, Nankissoor, N, Vadakedath, N, Daiker, V, Obado, S, Silva-Pereira, S, Jackson, A, Devos, D, Lukeš, J, Lebert, M, Vaughan, S, Hampl, V, Carrington, M, Ginger, M, Dacks, J, Kelly, S, Field, M
Format: Journal article
Language:English
Published: BioMed Central 2019
_version_ 1826266393122701312
author Ebenezer, T
Zoltner, M
Burrell, A
Nenarokova, A
Novák Vanclová, A
Prasad, B
Soukal, P
Santana-Molina, C
O'Neill, E
Nankissoor, N
Vadakedath, N
Daiker, V
Obado, S
Silva-Pereira, S
Jackson, A
Devos, D
Lukeš, J
Lebert, M
Vaughan, S
Hampl, V
Carrington, M
Ginger, M
Dacks, J
Kelly, S
Field, M
author_facet Ebenezer, T
Zoltner, M
Burrell, A
Nenarokova, A
Novák Vanclová, A
Prasad, B
Soukal, P
Santana-Molina, C
O'Neill, E
Nankissoor, N
Vadakedath, N
Daiker, V
Obado, S
Silva-Pereira, S
Jackson, A
Devos, D
Lukeš, J
Lebert, M
Vaughan, S
Hampl, V
Carrington, M
Ginger, M
Dacks, J
Kelly, S
Field, M
author_sort Ebenezer, T
collection OXFORD
description <strong>Background</strong> Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. <br/><br/> <strong>Results</strong> We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. <br/><br/> <strong>Conclusions</strong> Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the ‘shopping bag’ hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.
first_indexed 2024-03-06T20:38:14Z
format Journal article
id oxford-uuid:335ccde7-143f-4785-8947-da622f0a818a
institution University of Oxford
language English
last_indexed 2024-03-06T20:38:14Z
publishDate 2019
publisher BioMed Central
record_format dspace
spelling oxford-uuid:335ccde7-143f-4785-8947-da622f0a818a2022-03-26T13:19:52ZTranscriptome, proteome and draft genome of Euglena gracilisJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:335ccde7-143f-4785-8947-da622f0a818aEnglishSymplectic Elements at OxfordBioMed Central2019Ebenezer, TZoltner, MBurrell, ANenarokova, ANovák Vanclová, APrasad, BSoukal, PSantana-Molina, CO'Neill, ENankissoor, NVadakedath, NDaiker, VObado, SSilva-Pereira, SJackson, ADevos, DLukeš, JLebert, MVaughan, SHampl, VCarrington, MGinger, MDacks, JKelly, SField, M<strong>Background</strong> Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. <br/><br/> <strong>Results</strong> We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. <br/><br/> <strong>Conclusions</strong> Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the ‘shopping bag’ hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.
spellingShingle Ebenezer, T
Zoltner, M
Burrell, A
Nenarokova, A
Novák Vanclová, A
Prasad, B
Soukal, P
Santana-Molina, C
O'Neill, E
Nankissoor, N
Vadakedath, N
Daiker, V
Obado, S
Silva-Pereira, S
Jackson, A
Devos, D
Lukeš, J
Lebert, M
Vaughan, S
Hampl, V
Carrington, M
Ginger, M
Dacks, J
Kelly, S
Field, M
Transcriptome, proteome and draft genome of Euglena gracilis
title Transcriptome, proteome and draft genome of Euglena gracilis
title_full Transcriptome, proteome and draft genome of Euglena gracilis
title_fullStr Transcriptome, proteome and draft genome of Euglena gracilis
title_full_unstemmed Transcriptome, proteome and draft genome of Euglena gracilis
title_short Transcriptome, proteome and draft genome of Euglena gracilis
title_sort transcriptome proteome and draft genome of euglena gracilis
work_keys_str_mv AT ebenezert transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT zoltnerm transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT burrella transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT nenarokovaa transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT novakvanclovaa transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT prasadb transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT soukalp transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT santanamolinac transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT oneille transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT nankissoorn transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT vadakedathn transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT daikerv transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT obados transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT silvapereiras transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT jacksona transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT devosd transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT lukesj transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT lebertm transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT vaughans transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT hamplv transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT carringtonm transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT gingerm transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT dacksj transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT kellys transcriptomeproteomeanddraftgenomeofeuglenagracilis
AT fieldm transcriptomeproteomeanddraftgenomeofeuglenagracilis