Sequential Monte Carlo Methods to Train Neural Network Models
We discuss a novel strategy for training neural networks using sequential Monte Carlo algorithms and propose a new hybrid gradient descent / sampling importance resampling algorithm (HySIR). In terms of computational time and accuracy, the hybrid SIR is a clear improvement over conventional sequenti...
المؤلفون الرئيسيون: | Freitas, D, Nando, Niranjan, M, Gee, A, Doucet, A |
---|---|
التنسيق: | Journal article |
منشور في: |
2000
|
مواد مشابهة
-
Sequential monte carlo methods To train neural network models
حسب: , d, وآخرون
منشور في: (2000) -
Sequential Monte Carlo methods for diffusion processes
حسب: Jasra, A, وآخرون
منشور في: (2009) -
Sequential Monte Carlo samplers
حسب: Del Moral, P, وآخرون
منشور في: (2006) -
Sequential Monte Carlo for model selection and estimation of neural networks
حسب: Andrieu, C, وآخرون
منشور في: (2000) -
Controlled sequential Monte Carlo
حسب: Heng, J, وآخرون
منشور في: (2020)