Sequential Monte Carlo Methods to Train Neural Network Models
We discuss a novel strategy for training neural networks using sequential Monte Carlo algorithms and propose a new hybrid gradient descent / sampling importance resampling algorithm (HySIR). In terms of computational time and accuracy, the hybrid SIR is a clear improvement over conventional sequenti...
Hlavní autoři: | Freitas, D, Nando, Niranjan, M, Gee, A, Doucet, A |
---|---|
Médium: | Journal article |
Vydáno: |
2000
|
Podobné jednotky
-
Sequential monte carlo methods To train neural network models
Autor: , d, a další
Vydáno: (2000) -
Sequential Monte Carlo methods for diffusion processes
Autor: Jasra, A, a další
Vydáno: (2009) -
Sequential Monte Carlo samplers
Autor: Del Moral, P, a další
Vydáno: (2006) -
Sequential Monte Carlo for model selection and estimation of neural networks
Autor: Andrieu, C, a další
Vydáno: (2000) -
Controlled sequential Monte Carlo
Autor: Heng, J, a další
Vydáno: (2020)