Sequential Monte Carlo Methods to Train Neural Network Models
We discuss a novel strategy for training neural networks using sequential Monte Carlo algorithms and propose a new hybrid gradient descent / sampling importance resampling algorithm (HySIR). In terms of computational time and accuracy, the hybrid SIR is a clear improvement over conventional sequenti...
Váldodahkkit: | Freitas, D, Nando, Niranjan, M, Gee, A, Doucet, A |
---|---|
Materiálatiipa: | Journal article |
Almmustuhtton: |
2000
|
Geahča maid
-
Sequential monte carlo methods To train neural network models
Dahkki: , d, et al.
Almmustuhtton: (2000) -
Sequential Monte Carlo methods for diffusion processes
Dahkki: Jasra, A, et al.
Almmustuhtton: (2009) -
Sequential Monte Carlo samplers
Dahkki: Del Moral, P, et al.
Almmustuhtton: (2006) -
Sequential Monte Carlo for model selection and estimation of neural networks
Dahkki: Andrieu, C, et al.
Almmustuhtton: (2000) -
Controlled sequential Monte Carlo
Dahkki: Heng, J, et al.
Almmustuhtton: (2020)