Sequential Monte Carlo Methods to Train Neural Network Models
We discuss a novel strategy for training neural networks using sequential Monte Carlo algorithms and propose a new hybrid gradient descent / sampling importance resampling algorithm (HySIR). In terms of computational time and accuracy, the hybrid SIR is a clear improvement over conventional sequenti...
Huvudupphovsmän: | Freitas, D, Nando, Niranjan, M, Gee, A, Doucet, A |
---|---|
Materialtyp: | Journal article |
Publicerad: |
2000
|
Liknande verk
-
Sequential monte carlo methods To train neural network models
av: , d, et al.
Publicerad: (2000) -
Sequential Monte Carlo methods for diffusion processes
av: Jasra, A, et al.
Publicerad: (2009) -
Sequential Monte Carlo samplers
av: Del Moral, P, et al.
Publicerad: (2006) -
Sequential Monte Carlo for model selection and estimation of neural networks
av: Andrieu, C, et al.
Publicerad: (2000) -
Controlled sequential Monte Carlo
av: Heng, J, et al.
Publicerad: (2020)