CrossScore: towards multi-view image evaluation and scoring
We introduce a novel cross-reference image quality assessment method that effectively fills the gap in the image assessment landscape, complementing the array of established evaluation schemes – ranging from full-reference metrics like SSIM, no-reference metrics such as NIQE, to general-reference me...
Main Authors: | , , , , |
---|---|
Format: | Internet publication |
Language: | English |
Published: |
2024
|
_version_ | 1826313046345121792 |
---|---|
author | Wang, Z Bian, W Parkhi, O Ren, Y Prisacariu, VA |
author_facet | Wang, Z Bian, W Parkhi, O Ren, Y Prisacariu, VA |
author_sort | Wang, Z |
collection | OXFORD |
description | We introduce a novel cross-reference image quality assessment method that effectively fills the gap in the image assessment landscape, complementing the array of established evaluation schemes – ranging from full-reference metrics like SSIM, no-reference metrics such as NIQE, to general-reference metrics including FID, and Multi-modal-reference metrics, e.g., CLIPScore. Utilising a neural network with the cross-attention mechanism and a unique data collection pipeline from NVS optimisation, our method enables accurate image quality assessment without requiring ground truth references. By comparing a query image against multiple views of the same scene, our method addresses the limitations of existing metrics in novel view synthesis (NVS) and similar tasks where direct reference images are unavailable. Experimental results show that our method is closely correlated to the full-reference metric SSIM, while not requiring ground truth references. |
first_indexed | 2024-09-25T04:06:40Z |
format | Internet publication |
id | oxford-uuid:33a5be5d-338d-4bb3-b2d5-ba85b658507b |
institution | University of Oxford |
language | English |
last_indexed | 2024-09-25T04:06:40Z |
publishDate | 2024 |
record_format | dspace |
spelling | oxford-uuid:33a5be5d-338d-4bb3-b2d5-ba85b658507b2024-06-03T15:18:14ZCrossScore: towards multi-view image evaluation and scoringInternet publicationhttp://purl.org/coar/resource_type/c_7ad9uuid:33a5be5d-338d-4bb3-b2d5-ba85b658507bEnglishSymplectic Elements2024Wang, ZBian, WParkhi, ORen, YPrisacariu, VAWe introduce a novel cross-reference image quality assessment method that effectively fills the gap in the image assessment landscape, complementing the array of established evaluation schemes – ranging from full-reference metrics like SSIM, no-reference metrics such as NIQE, to general-reference metrics including FID, and Multi-modal-reference metrics, e.g., CLIPScore. Utilising a neural network with the cross-attention mechanism and a unique data collection pipeline from NVS optimisation, our method enables accurate image quality assessment without requiring ground truth references. By comparing a query image against multiple views of the same scene, our method addresses the limitations of existing metrics in novel view synthesis (NVS) and similar tasks where direct reference images are unavailable. Experimental results show that our method is closely correlated to the full-reference metric SSIM, while not requiring ground truth references. |
spellingShingle | Wang, Z Bian, W Parkhi, O Ren, Y Prisacariu, VA CrossScore: towards multi-view image evaluation and scoring |
title | CrossScore: towards multi-view image evaluation and scoring |
title_full | CrossScore: towards multi-view image evaluation and scoring |
title_fullStr | CrossScore: towards multi-view image evaluation and scoring |
title_full_unstemmed | CrossScore: towards multi-view image evaluation and scoring |
title_short | CrossScore: towards multi-view image evaluation and scoring |
title_sort | crossscore towards multi view image evaluation and scoring |
work_keys_str_mv | AT wangz crossscoretowardsmultiviewimageevaluationandscoring AT bianw crossscoretowardsmultiviewimageevaluationandscoring AT parkhio crossscoretowardsmultiviewimageevaluationandscoring AT reny crossscoretowardsmultiviewimageevaluationandscoring AT prisacariuva crossscoretowardsmultiviewimageevaluationandscoring |