Oracle inequalities for high dimensional vector autoregressions
<p style="text-align:justify;"> This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number...
المؤلفون الرئيسيون: | Kock, A, Callot, L |
---|---|
التنسيق: | Journal article |
منشور في: |
Elsevier
2015
|
مواد مشابهة
-
Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
حسب: Kock, A
منشور في: (2016) -
Oracle inequalities for convex loss functions with nonlinear targets
حسب: Caner, M, وآخرون
منشور في: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
حسب: Yijun Xiao, وآخرون
منشور في: (2020-11-01) -
Sharp threshold detection based on sup-norm error rates in high-dimensional models
حسب: Callot, L, وآخرون
منشور في: (2017) -
Stable Recovery of Sparse Signals and an Oracle Inequality
حسب: Cai, T. Tony, وآخرون
منشور في: (2011)