Oracle inequalities for high dimensional vector autoregressions
<p style="text-align:justify;"> This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number...
Autores principales: | Kock, A, Callot, L |
---|---|
Formato: | Journal article |
Publicado: |
Elsevier
2015
|
Ejemplares similares
-
Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
por: Kock, A
Publicado: (2016) -
Oracle inequalities for convex loss functions with nonlinear targets
por: Caner, M, et al.
Publicado: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
por: Yijun Xiao, et al.
Publicado: (2020-11-01) -
Sharp threshold detection based on sup-norm error rates in high-dimensional models
por: Callot, L, et al.
Publicado: (2017) -
Stable Recovery of Sparse Signals and an Oracle Inequality
por: Cai, T. Tony, et al.
Publicado: (2011)