Oracle inequalities for high dimensional vector autoregressions
<p style="text-align:justify;"> This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number...
Auteurs principaux: | Kock, A, Callot, L |
---|---|
Format: | Journal article |
Publié: |
Elsevier
2015
|
Documents similaires
-
Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
par: Kock, A
Publié: (2016) -
Oracle inequalities for convex loss functions with nonlinear targets
par: Caner, M, et autres
Publié: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
par: Yijun Xiao, et autres
Publié: (2020-11-01) -
Sharp threshold detection based on sup-norm error rates in high-dimensional models
par: Callot, L, et autres
Publié: (2017) -
Stable Recovery of Sparse Signals and an Oracle Inequality
par: Cai, T. Tony, et autres
Publié: (2011)