Oracle inequalities for high dimensional vector autoregressions
<p style="text-align:justify;"> This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number...
Autori principali: | Kock, A, Callot, L |
---|---|
Natura: | Journal article |
Pubblicazione: |
Elsevier
2015
|
Documenti analoghi
Documenti analoghi
-
Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
di: Kock, A
Pubblicazione: (2016) -
Oracle inequalities for convex loss functions with nonlinear targets
di: Caner, M, et al.
Pubblicazione: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
di: Yijun Xiao, et al.
Pubblicazione: (2020-11-01) -
Sharp threshold detection based on sup-norm error rates in high-dimensional models
di: Callot, L, et al.
Pubblicazione: (2017) -
Stable Recovery of Sparse Signals and an Oracle Inequality
di: Cai, T. Tony, et al.
Pubblicazione: (2011)