Oracle inequalities for high dimensional vector autoregressions
<p style="text-align:justify;"> This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number...
主要な著者: | Kock, A, Callot, L |
---|---|
フォーマット: | Journal article |
出版事項: |
Elsevier
2015
|
類似資料
-
Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
著者:: Kock, A
出版事項: (2016) -
Oracle inequalities for convex loss functions with nonlinear targets
著者:: Caner, M, 等
出版事項: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
著者:: Yijun Xiao, 等
出版事項: (2020-11-01) -
Sharp threshold detection based on sup-norm error rates in high-dimensional models
著者:: Callot, L, 等
出版事項: (2017) -
Stable Recovery of Sparse Signals and an Oracle Inequality
著者:: Cai, T. Tony, 等
出版事項: (2011)