Oracle inequalities for high dimensional vector autoregressions
<p style="text-align:justify;"> This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number...
Автори: | Kock, A, Callot, L |
---|---|
Формат: | Journal article |
Опубліковано: |
Elsevier
2015
|
Схожі ресурси
Схожі ресурси
-
Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
за авторством: Kock, A
Опубліковано: (2016) -
Oracle inequalities for convex loss functions with nonlinear targets
за авторством: Caner, M, та інші
Опубліковано: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
за авторством: Yijun Xiao, та інші
Опубліковано: (2020-11-01) -
Sharp threshold detection based on sup-norm error rates in high-dimensional models
за авторством: Callot, L, та інші
Опубліковано: (2017) -
Stable Recovery of Sparse Signals and an Oracle Inequality
за авторством: Cai, T. Tony, та інші
Опубліковано: (2011)