Purcell enhancement of a deterministically coupled quantum dot in an SU-8 laser patterned photonic crystal heterostructure
The updated data files are supporting demonstration of weak coupling between a cavity mode and emission from a single quantum dot. In this research (done by January 2020) we developed an easily controlled fabrication process to deterministically write a mode gap cavity over a photonics crystal waveg...
Main Authors: | , , , , , |
---|---|
Formato: | Dataset |
Idioma: | English |
Publicado em: |
University of Oxford
2020
|
Assuntos: |
Resumo: | The updated data files are supporting demonstration of weak coupling between a cavity mode and emission from a single quantum dot. In this research (done by January 2020) we developed an easily controlled fabrication process to deterministically write a mode gap cavity over a photonics crystal waveguide. All data files uploaded here are obtained through micro-photoluminescence(PL) experiments. Those associated with 'fig2' are the single time-integrated PL spectra with the first column in the data file being wavelength in 'nm'. fig2 a and b are single PL spectra of high and low density of ensemble quantum dots emission before coating the cavity. fig2 c is showing the crossover between the cavity emission mode and the quantum dot spectrum over a temperature run. fig 3 data is the time-resolved PL data taken at temperatures of 6K and 30K demonstrating Purcell enhancement. The corresponding instrument response function (irf) of the excitation laser signal is also included for deconvolution. NB: This is Version 2 of the data and supercedes Version 1 at https://doi.org/10.5287/bodleian:dXbD81ZmD |
---|