The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins.

A key step in homologous recombination is the loading of Rad51 onto single-stranded DNA to form a nucleoprotein filament that promotes homologous DNA pairing and strand exchange. Mediator proteins, such as Rad52 and Rad55-Rad57, are thought to aid filament assembly by overcoming an inhibitory effect...

Full description

Bibliographic Details
Main Authors: Osman, F, Dixon, J, Barr, A, Whitby, M
Format: Journal article
Language:English
Published: 2005
Description
Summary:A key step in homologous recombination is the loading of Rad51 onto single-stranded DNA to form a nucleoprotein filament that promotes homologous DNA pairing and strand exchange. Mediator proteins, such as Rad52 and Rad55-Rad57, are thought to aid filament assembly by overcoming an inhibitory effect of the single-stranded-DNA-binding protein replication protein A. Here we show that mediator proteins are also required to enable fission yeast Rad51 (called Rhp51) to function in the presence of the F-box DNA helicase Fbh1. In particular, we show that the critical function of Rad22 (an orthologue of Rad52) in promoting Rhp51-dependent recombination and DNA repair can be mostly circumvented by deleting fbh1. Similarly, the reduced growth/viability and DNA damage sensitivity of an fbh1(-) mutant are variously suppressed by deletion of any one of the mediators Rad22, Rhp55, and Swi5. From these data we propose that Rhp51 action is controlled through an interplay between Fbh1 and the mediator proteins. Colocalization of Fbh1 with Rhp51 damage-induced foci suggests that this interplay occurs at the sites of nucleoprotein filament assembly. Furthermore, analysis of different fbh1 mutant alleles suggests that both the F-box and helicase activities of Fbh1 contribute to controlling Rhp51.