Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling

A common way to simulate the transport and spread of pollutants in the atmosphere is via stochastic Lagrangian dispersion models. Mathematically, these models describe turbulent transport processes with stochastic differential equations (SDEs). The computational bottleneck is the Monte Carlo algorit...

Full description

Bibliographic Details
Main Authors: Katsiolides, G, Muller, E, Scheichl, R, Shardlow, T, Giles, M, Thomson, D
Format: Journal article
Published: Elsevier 2017
_version_ 1826266685116514304
author Katsiolides, G
Muller, E
Scheichl, R
Shardlow, T
Giles, M
Thomson, D
author_facet Katsiolides, G
Muller, E
Scheichl, R
Shardlow, T
Giles, M
Thomson, D
author_sort Katsiolides, G
collection OXFORD
description A common way to simulate the transport and spread of pollutants in the atmosphere is via stochastic Lagrangian dispersion models. Mathematically, these models describe turbulent transport processes with stochastic differential equations (SDEs). The computational bottleneck is the Monte Carlo algorithm, which simulates the motion of a large number of model particles in a turbulent velocity field; for each particle, a trajectory is calculated with a numerical timestepping method. Choosing an efficient numerical method is particularly important in operational emergency-response applications, such as tracking radioactive clouds from nuclear accidents or predicting the impact of volcanic ash clouds on international aviation, where accurate and timely predictions are essential. In this paper, we investigate the application of the Multilevel Monte Carlo (MLMC) method to simulate the propagation of particles in a representative one-dimensional dispersion scenario in the atmospheric boundary layer. MLMC can be shown to result in asymptotically superior computational complexity and reduced computational cost when compared to the Standard Monte Carlo (StMC) method, which is currently used in atmospheric dispersion modelling. To reduce the absolute cost of the method also in the non-asymptotic regime, it is equally important to choose the best possible numerical timestepping method on each level. To investigate this, we also compare the standard symplectic Euler method, which is used in many operational models, with two improved timestepping algorithms based on SDE splitting methods.
first_indexed 2024-03-06T20:42:42Z
format Journal article
id oxford-uuid:34c8d95b-be55-4625-bbf6-d1e471947a81
institution University of Oxford
last_indexed 2024-03-06T20:42:42Z
publishDate 2017
publisher Elsevier
record_format dspace
spelling oxford-uuid:34c8d95b-be55-4625-bbf6-d1e471947a812022-03-26T13:28:18ZMultilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modellingJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:34c8d95b-be55-4625-bbf6-d1e471947a81Symplectic Elements at OxfordElsevier2017Katsiolides, GMuller, EScheichl, RShardlow, TGiles, MThomson, DA common way to simulate the transport and spread of pollutants in the atmosphere is via stochastic Lagrangian dispersion models. Mathematically, these models describe turbulent transport processes with stochastic differential equations (SDEs). The computational bottleneck is the Monte Carlo algorithm, which simulates the motion of a large number of model particles in a turbulent velocity field; for each particle, a trajectory is calculated with a numerical timestepping method. Choosing an efficient numerical method is particularly important in operational emergency-response applications, such as tracking radioactive clouds from nuclear accidents or predicting the impact of volcanic ash clouds on international aviation, where accurate and timely predictions are essential. In this paper, we investigate the application of the Multilevel Monte Carlo (MLMC) method to simulate the propagation of particles in a representative one-dimensional dispersion scenario in the atmospheric boundary layer. MLMC can be shown to result in asymptotically superior computational complexity and reduced computational cost when compared to the Standard Monte Carlo (StMC) method, which is currently used in atmospheric dispersion modelling. To reduce the absolute cost of the method also in the non-asymptotic regime, it is equally important to choose the best possible numerical timestepping method on each level. To investigate this, we also compare the standard symplectic Euler method, which is used in many operational models, with two improved timestepping algorithms based on SDE splitting methods.
spellingShingle Katsiolides, G
Muller, E
Scheichl, R
Shardlow, T
Giles, M
Thomson, D
Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling
title Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling
title_full Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling
title_fullStr Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling
title_full_unstemmed Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling
title_short Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling
title_sort multilevel monte carlo and improved timestepping methods in atmospheric dispersion modelling
work_keys_str_mv AT katsiolidesg multilevelmontecarloandimprovedtimesteppingmethodsinatmosphericdispersionmodelling
AT mullere multilevelmontecarloandimprovedtimesteppingmethodsinatmosphericdispersionmodelling
AT scheichlr multilevelmontecarloandimprovedtimesteppingmethodsinatmosphericdispersionmodelling
AT shardlowt multilevelmontecarloandimprovedtimesteppingmethodsinatmosphericdispersionmodelling
AT gilesm multilevelmontecarloandimprovedtimesteppingmethodsinatmosphericdispersionmodelling
AT thomsond multilevelmontecarloandimprovedtimesteppingmethodsinatmosphericdispersionmodelling