Application of hpDGFEM to mechanisms at channel microband electrodes

We extend our earlier work (Harriman et al., Oxford University Computing Laboratory Technical Report NA04/19) on hp-DGFEM for disc electrodes to the case of reaction mechanisms to the increasingly popular channel microband electrode configuration. We present results for the simple E reaction mechani...

Full description

Bibliographic Details
Main Authors: Harriman, K, Gavaghan, D, Suli, E
Format: Report
Published: Unspecified 2004
Description
Summary:We extend our earlier work (Harriman et al., Oxford University Computing Laboratory Technical Report NA04/19) on hp-DGFEM for disc electrodes to the case of reaction mechanisms to the increasingly popular channel microband electrode configuration. We present results for the simple E reaction mechanism (convection-diffusion equation), for the ECE and EC2E reaction mechanisms (linear and nonlinear systems of reaction-convection- diffusion equations, respectively) and for the DISP1 and DISP2 reaction mechanisms (linear and nonlinear coupled systems of reaction-convection-diffusion equations, respectively). In all cases we demonstrate excellent agreement with previous results using relatively coarse meshes and without the need for streamline-diffusion stabilisation, even at high flow rates.