The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures
We study the asymptotic behaviour of higher order correlations En≤X/d g1(n + ah1)· · · gk (n + ahk ) as a function of the parameters a and d, where g1, . . . , gk are bounded multiplicative functions, h1, . . . , hk are integer shifts, and X is large. Our main structural result asserts, roughly spea...
Главные авторы: | Tao, T, Teräväinen, J |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Mathematical Sciences Publishers
2019
|
Схожие документы
-
The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures
по: Tao, T, и др.
Опубликовано: (2019) -
THE LOGARITHMICALLY AVERAGED CHOWLA AND ELLIOTT CONJECTURES FOR TWO-POINT CORRELATIONS
по: TERENCE TAO
Опубликовано: (2016-01-01) -
Odd order cases of the logarithmically averaged Chowla conjecture
по: Tao, T, и др.
Опубликовано: (2019) -
Ergodicity of the Liouville system implies the Chowla conjecture
по: Nikos Frantzikinakis
Опубликовано: (2017-12-01) -
On an Erdős–Kac-type conjecture of Elliott
по: Gorodetsky, O, и др.
Опубликовано: (2024)