Hypergraph cuts above the average
An r-cut of a k-uniform hypergraph H is a partition of the vertex set of H into r parts and the size of the cut is the number of edges which have a vertex in each part. A classical result of Edwards says that every m-edge graph has a 2-cut of size m/2+Ω)(m−−√) and this is best possible. That is, the...
Huvudupphovsmän: | Conlon, D, Fox, J, Kwan, M, Sudakov, B |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
Hebrew University Magnes Press
2019
|
Liknande verk
Liknande verk
-
Erdos–Hajnal-type theorems in hypergraphs
av: Conlon, David, et al.
Publicerad: (2015) -
Quasirandomness in hypergraphs
av: Aigner-Horev, E, et al.
Publicerad: (2017) -
Quasirandomness in hypergraphs
av: Aigner-Horev, E, et al.
Publicerad: (2018) -
Hypergraph expanders from Cayley graphs
av: Conlon, D
Publicerad: (2019) -
Hypergraph cuts with edge-dependent vertex weights
av: Yu Zhu, et al.
Publicerad: (2022-07-01)