Hypergraph cuts above the average
An r-cut of a k-uniform hypergraph H is a partition of the vertex set of H into r parts and the size of the cut is the number of edges which have a vertex in each part. A classical result of Edwards says that every m-edge graph has a 2-cut of size m/2+Ω)(m−−√) and this is best possible. That is, the...
Hauptverfasser: | Conlon, D, Fox, J, Kwan, M, Sudakov, B |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Hebrew University Magnes Press
2019
|
Ähnliche Einträge
Ähnliche Einträge
-
Erdos–Hajnal-type theorems in hypergraphs
von: Conlon, David, et al.
Veröffentlicht: (2015) -
Quasirandomness in hypergraphs
von: Aigner-Horev, E, et al.
Veröffentlicht: (2017) -
Quasirandomness in hypergraphs
von: Aigner-Horev, E, et al.
Veröffentlicht: (2018) -
Hypergraph expanders from Cayley graphs
von: Conlon, D
Veröffentlicht: (2019) -
Hypergraph cuts with edge-dependent vertex weights
von: Yu Zhu, et al.
Veröffentlicht: (2022-07-01)