Stochastic control approach to the multi-armed bandit problems
<p>A multi-armed bandit is the simplest problem to study learning under uncertainty when decisions affect information. A standard approach to the multi-armed bandit often gives a heuristic construction of an algorithm and proves its regret bound. Following a constructive approach, it is often...
Hlavní autor: | Treetanthiploet, T |
---|---|
Další autoři: | Cohen, S |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2021
|
Témata: |
Podobné jednotky
-
Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach
Autor: Dan Ben Ami, a další
Vydáno: (2025-01-01) -
An Analysis of the Value of Information When Exploring Stochastic, Discrete Multi-Armed Bandits
Autor: Isaac J. Sledge, a další
Vydáno: (2018-02-01) -
Output-weighted sampling for multi-armed bandits with extreme payoffs
Autor: Yang, Yibo, a další
Vydáno: (2024) -
Risk-aware multi-armed bandit problem with application to portfolio selection
Autor: Xiaoguang Huo, a další
Vydáno: (2017-01-01) -
Multi-Armed Bandits in Brain-Computer Interfaces
Autor: Frida Heskebeck, a další
Vydáno: (2022-07-01)