Stochastic control approach to the multi-armed bandit problems
<p>A multi-armed bandit is the simplest problem to study learning under uncertainty when decisions affect information. A standard approach to the multi-armed bandit often gives a heuristic construction of an algorithm and proves its regret bound. Following a constructive approach, it is often...
Κύριος συγγραφέας: | Treetanthiploet, T |
---|---|
Άλλοι συγγραφείς: | Cohen, S |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
2021
|
Θέματα: |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach
ανά: Dan Ben Ami, κ.ά.
Έκδοση: (2025-01-01) -
An Analysis of the Value of Information When Exploring Stochastic, Discrete Multi-Armed Bandits
ανά: Isaac J. Sledge, κ.ά.
Έκδοση: (2018-02-01) -
Output-weighted sampling for multi-armed bandits with extreme payoffs
ανά: Yang, Yibo, κ.ά.
Έκδοση: (2024) -
Risk-aware multi-armed bandit problem with application to portfolio selection
ανά: Xiaoguang Huo, κ.ά.
Έκδοση: (2017-01-01) -
Multi-Armed Bandits in Brain-Computer Interfaces
ανά: Frida Heskebeck, κ.ά.
Έκδοση: (2022-07-01)