Stochastic control approach to the multi-armed bandit problems
<p>A multi-armed bandit is the simplest problem to study learning under uncertainty when decisions affect information. A standard approach to the multi-armed bandit often gives a heuristic construction of an algorithm and proves its regret bound. Following a constructive approach, it is often...
Päätekijä: | Treetanthiploet, T |
---|---|
Muut tekijät: | Cohen, S |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
2021
|
Aiheet: |
Samankaltaisia teoksia
-
Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach
Tekijä: Dan Ben Ami, et al.
Julkaistu: (2025-01-01) -
An Analysis of the Value of Information When Exploring Stochastic, Discrete Multi-Armed Bandits
Tekijä: Isaac J. Sledge, et al.
Julkaistu: (2018-02-01) -
Output-weighted sampling for multi-armed bandits with extreme payoffs
Tekijä: Yang, Yibo, et al.
Julkaistu: (2024) -
Risk-aware multi-armed bandit problem with application to portfolio selection
Tekijä: Xiaoguang Huo, et al.
Julkaistu: (2017-01-01) -
Multi-Armed Bandits in Brain-Computer Interfaces
Tekijä: Frida Heskebeck, et al.
Julkaistu: (2022-07-01)