Stochastic control approach to the multi-armed bandit problems
<p>A multi-armed bandit is the simplest problem to study learning under uncertainty when decisions affect information. A standard approach to the multi-armed bandit often gives a heuristic construction of an algorithm and proves its regret bound. Following a constructive approach, it is often...
Auteur principal: | Treetanthiploet, T |
---|---|
Autres auteurs: | Cohen, S |
Format: | Thèse |
Langue: | English |
Publié: |
2021
|
Sujets: |
Documents similaires
-
Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach
par: Dan Ben Ami, et autres
Publié: (2025-01-01) -
An Analysis of the Value of Information When Exploring Stochastic, Discrete Multi-Armed Bandits
par: Isaac J. Sledge, et autres
Publié: (2018-02-01) -
Output-weighted sampling for multi-armed bandits with extreme payoffs
par: Yang, Yibo, et autres
Publié: (2024) -
Risk-aware multi-armed bandit problem with application to portfolio selection
par: Xiaoguang Huo, et autres
Publié: (2017-01-01) -
Multi-Armed Bandits in Brain-Computer Interfaces
par: Frida Heskebeck, et autres
Publié: (2022-07-01)