Stochastic control approach to the multi-armed bandit problems
<p>A multi-armed bandit is the simplest problem to study learning under uncertainty when decisions affect information. A standard approach to the multi-armed bandit often gives a heuristic construction of an algorithm and proves its regret bound. Following a constructive approach, it is often...
मुख्य लेखक: | Treetanthiploet, T |
---|---|
अन्य लेखक: | Cohen, S |
स्वरूप: | थीसिस |
भाषा: | English |
प्रकाशित: |
2021
|
विषय: |
समान संसाधन
-
Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach
द्वारा: Dan Ben Ami, और अन्य
प्रकाशित: (2025-01-01) -
An Analysis of the Value of Information When Exploring Stochastic, Discrete Multi-Armed Bandits
द्वारा: Isaac J. Sledge, और अन्य
प्रकाशित: (2018-02-01) -
Output-weighted sampling for multi-armed bandits with extreme payoffs
द्वारा: Yang, Yibo, और अन्य
प्रकाशित: (2024) -
Risk-aware multi-armed bandit problem with application to portfolio selection
द्वारा: Xiaoguang Huo, और अन्य
प्रकाशित: (2017-01-01) -
Multi-Armed Bandits in Brain-Computer Interfaces
द्वारा: Frida Heskebeck, और अन्य
प्रकाशित: (2022-07-01)