Stochastic control approach to the multi-armed bandit problems
<p>A multi-armed bandit is the simplest problem to study learning under uncertainty when decisions affect information. A standard approach to the multi-armed bandit often gives a heuristic construction of an algorithm and proves its regret bound. Following a constructive approach, it is often...
Үндсэн зохиолч: | Treetanthiploet, T |
---|---|
Бусад зохиолчид: | Cohen, S |
Формат: | Дипломын ажил |
Хэл сонгох: | English |
Хэвлэсэн: |
2021
|
Нөхцлүүд: |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach
-н: Dan Ben Ami, зэрэг
Хэвлэсэн: (2025-01-01) -
An Analysis of the Value of Information When Exploring Stochastic, Discrete Multi-Armed Bandits
-н: Isaac J. Sledge, зэрэг
Хэвлэсэн: (2018-02-01) -
Output-weighted sampling for multi-armed bandits with extreme payoffs
-н: Yang, Yibo, зэрэг
Хэвлэсэн: (2024) -
Risk-aware multi-armed bandit problem with application to portfolio selection
-н: Xiaoguang Huo, зэрэг
Хэвлэсэн: (2017-01-01) -
Multi-Armed Bandits in Brain-Computer Interfaces
-н: Frida Heskebeck, зэрэг
Хэвлэсэн: (2022-07-01)