The role of a strong confining potential in a nonlinear Fokker-Planck equation

We show that solutions of nonlinear nonlocal Fokker--Planck equations in a bounded domain with no-flux boundary conditions can be approximated by Cauchy problems with increasingly strong confining potentials defined in the whole space. Two different approaches are analyzed, making crucial use of uni...

全面介紹

書目詳細資料
Main Authors: Alasio, L, Bruna, M
格式: Journal article
語言:English
出版: Elsevier 2019
實物特徵
總結:We show that solutions of nonlinear nonlocal Fokker--Planck equations in a bounded domain with no-flux boundary conditions can be approximated by Cauchy problems with increasingly strong confining potentials defined in the whole space. Two different approaches are analyzed, making crucial use of uniform estimates for $L^2$ energy functionals and free energy (or entropy) functionals respectively. In both cases, we prove that the weak formulation of the problem in a bounded domain can be obtained as the weak formulation of a limit problem in the whole space involving a suitably chosen sequence of large confining potentials. The free energy approach extends to the case degenerate diffusion.