Incremental learning of fetal heart anatomies using interpretable saliency maps
While medical image analysis has seen extensive use of deep neural networks, learning over multiple tasks is a challenge for connectionist networks due to tendencies of degradation in performance over old tasks while adapting to novel tasks. It is pertinent that adaptations to new data distributions...
Κύριοι συγγραφείς: | Patra, A, Noble, JA |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
Springer
2020
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Hierarchical class incremental learning of anatomical structures in fetal echocardiography videos
ανά: Noble, JA, κ.ά.
Έκδοση: (2020) -
Multi-anatomy localization in fetal echocardiography videos
ανά: Patra, A, κ.ά.
Έκδοση: (2019) -
Learning spatio-temporal aggregation for fetal heart analysis in ultrasound video
ανά: Patra, A, κ.ά.
Έκδοση: (2017) -
Anatomy-aware contrastive representation learning for fetal ultrasound
ανά: Fu, Z, κ.ά.
Έκδοση: (2023) -
Anatomy of the normal fetal heart: The basis for understanding fetal echocardiography
ανά: Beatriz Picazo-Angelin, κ.ά.
Έκδοση: (2018-01-01)