Incremental learning of fetal heart anatomies using interpretable saliency maps
While medical image analysis has seen extensive use of deep neural networks, learning over multiple tasks is a challenge for connectionist networks due to tendencies of degradation in performance over old tasks while adapting to novel tasks. It is pertinent that adaptations to new data distributions...
主要な著者: | Patra, A, Noble, JA |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Springer
2020
|
類似資料
-
Hierarchical class incremental learning of anatomical structures in fetal echocardiography videos
著者:: Noble, JA, 等
出版事項: (2020) -
Multi-anatomy localization in fetal echocardiography videos
著者:: Patra, A, 等
出版事項: (2019) -
Learning spatio-temporal aggregation for fetal heart analysis in ultrasound video
著者:: Patra, A, 等
出版事項: (2017) -
Anatomy-aware contrastive representation learning for fetal ultrasound
著者:: Fu, Z, 等
出版事項: (2023) -
Anatomy of the normal fetal heart: The basis for understanding fetal echocardiography
著者:: Beatriz Picazo-Angelin, 等
出版事項: (2018-01-01)