Incremental learning of fetal heart anatomies using interpretable saliency maps
While medical image analysis has seen extensive use of deep neural networks, learning over multiple tasks is a challenge for connectionist networks due to tendencies of degradation in performance over old tasks while adapting to novel tasks. It is pertinent that adaptations to new data distributions...
Главные авторы: | Patra, A, Noble, JA |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Springer
2020
|
Схожие документы
Схожие документы
-
Hierarchical class incremental learning of anatomical structures in fetal echocardiography videos
по: Noble, JA, и др.
Опубликовано: (2020) -
Multi-anatomy localization in fetal echocardiography videos
по: Patra, A, и др.
Опубликовано: (2019) -
Learning spatio-temporal aggregation for fetal heart analysis in ultrasound video
по: Patra, A, и др.
Опубликовано: (2017) -
Anatomy-aware contrastive representation learning for fetal ultrasound
по: Fu, Z, и др.
Опубликовано: (2023) -
Anatomy of the normal fetal heart: The basis for understanding fetal echocardiography
по: Beatriz Picazo-Angelin, и др.
Опубликовано: (2018-01-01)