Particle Gibbs with ancestor sampling for probabilistic programs

Particle Markov chain Monte Carlo techniques rank among current state-of-the-art methods for probabilistic program inference. A drawback of these techniques is that they rely on importance resampling, which results in degenerate particle trajectories and a low effective sample size for variables sam...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Meent, J, Yang, H, Mansinghka, V, Wood, F
Aineistotyyppi: Conference item
Julkaistu: Journal of Machine Learning Research 2015