Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models
Bayesian methods are advantageous for biological modeling studies due to their ability to quantify and characterize posterior variability in model parameters. When Bayesian methods cannot be applied, due either to nondeterminism in the model or limitations on system observability, approximate Bayesi...
Principais autores: | Daly, A, Cooper, J, Gavaghan, D, Holmes, C |
---|---|
Formato: | Journal article |
Publicado em: |
Royal Society
2017
|
Registros relacionados
-
Sequential Monte Carlo samplers
por: Del Moral, P, et al.
Publicado em: (2006) -
Interacting sequential Monte Carlo samplers for trans-dimensional simulation
por: Jasra, A, et al.
Publicado em: (2008) -
Monte Carlo samplers for efficient network inference.
por: Zeliha Kilic, et al.
Publicado em: (2023-07-01) -
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference.
por: Bram Thijssen, et al.
Publicado em: (2020-01-01) -
Evolutionary Sequential Monte Carlo Samplers for Change-Point Models
por: Arnaud Dufays
Publicado em: (2016-03-01)