Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models
Bayesian methods are advantageous for biological modeling studies due to their ability to quantify and characterize posterior variability in model parameters. When Bayesian methods cannot be applied, due either to nondeterminism in the model or limitations on system observability, approximate Bayesi...
Hlavní autoři: | Daly, A, Cooper, J, Gavaghan, D, Holmes, C |
---|---|
Médium: | Journal article |
Vydáno: |
Royal Society
2017
|
Podobné jednotky
-
Sequential Monte Carlo samplers
Autor: Del Moral, P, a další
Vydáno: (2006) -
Interacting sequential Monte Carlo samplers for trans-dimensional simulation
Autor: Jasra, A, a další
Vydáno: (2008) -
Monte Carlo samplers for efficient network inference.
Autor: Zeliha Kilic, a další
Vydáno: (2023-07-01) -
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference.
Autor: Bram Thijssen, a další
Vydáno: (2020-01-01) -
Evolutionary Sequential Monte Carlo Samplers for Change-Point Models
Autor: Arnaud Dufays
Vydáno: (2016-03-01)