Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models
Bayesian methods are advantageous for biological modeling studies due to their ability to quantify and characterize posterior variability in model parameters. When Bayesian methods cannot be applied, due either to nondeterminism in the model or limitations on system observability, approximate Bayesi...
Auteurs principaux: | Daly, A, Cooper, J, Gavaghan, D, Holmes, C |
---|---|
Format: | Journal article |
Publié: |
Royal Society
2017
|
Documents similaires
-
Sequential Monte Carlo samplers
par: Del Moral, P, et autres
Publié: (2006) -
Interacting sequential Monte Carlo samplers for trans-dimensional simulation
par: Jasra, A, et autres
Publié: (2008) -
Monte Carlo samplers for efficient network inference.
par: Zeliha Kilic, et autres
Publié: (2023-07-01) -
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference.
par: Bram Thijssen, et autres
Publié: (2020-01-01) -
Evolutionary Sequential Monte Carlo Samplers for Change-Point Models
par: Arnaud Dufays
Publié: (2016-03-01)