Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models
Bayesian methods are advantageous for biological modeling studies due to their ability to quantify and characterize posterior variability in model parameters. When Bayesian methods cannot be applied, due either to nondeterminism in the model or limitations on system observability, approximate Bayesi...
Asıl Yazarlar: | Daly, A, Cooper, J, Gavaghan, D, Holmes, C |
---|---|
Materyal Türü: | Journal article |
Baskı/Yayın Bilgisi: |
Royal Society
2017
|
Benzer Materyaller
-
Sequential Monte Carlo samplers
Yazar:: Del Moral, P, ve diğerleri
Baskı/Yayın Bilgisi: (2006) -
Interacting sequential Monte Carlo samplers for trans-dimensional simulation
Yazar:: Jasra, A, ve diğerleri
Baskı/Yayın Bilgisi: (2008) -
Monte Carlo samplers for efficient network inference.
Yazar:: Zeliha Kilic, ve diğerleri
Baskı/Yayın Bilgisi: (2023-07-01) -
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference.
Yazar:: Bram Thijssen, ve diğerleri
Baskı/Yayın Bilgisi: (2020-01-01) -
Evolutionary Sequential Monte Carlo Samplers for Change-Point Models
Yazar:: Arnaud Dufays
Baskı/Yayın Bilgisi: (2016-03-01)