On the potential of the EChO mission to characterise gas giant atmospheres

Space telescopes such as EChO (Exoplanet Characterisation Observatory) and JWST (James Webb Space Telescope) will be important for the future study of extrasolar planet atmospheres. Both of these missions are capable of performing high sensitivity spectroscopic measurements at moderate resolutions i...

Full description

Bibliographic Details
Main Authors: Barstow, J, Aigrain, S, Irwin, P, Bowles, N, Fletcher, L, Lee, J
Format: Journal article
Language:English
Published: 2012
Description
Summary:Space telescopes such as EChO (Exoplanet Characterisation Observatory) and JWST (James Webb Space Telescope) will be important for the future study of extrasolar planet atmospheres. Both of these missions are capable of performing high sensitivity spectroscopic measurements at moderate resolutions in the visible and infrared, which will allow the characterisation of atmospheric properties using primary and secondary transit spectroscopy. We use the NEMESIS radiative transfer and retrieval tool (Irwin et al. 2008, Lee et al. 2012) to explore the potential of the proposed EChO mission to solve the retrieval problem for a range of H2-He planets orbiting different stars. We find that EChO should be capable of retrieving temperature structure to ~200 K precision and detecting H2O, CO2 and CH4 from a single eclipse measurement for a hot Jupiter orbiting a Sun-like star and a hot Neptune orbiting an M star, also providing upper limits on CO and NH3. We provide a table of retrieval precisions for these quantities in each test case. We expect around 30 Jupiter-sized planets to be observable by EChO; hot Neptunes orbiting M dwarfs are rarer, but we anticipate observations of at least one similar planet.