Vafa-Witten invariants for projective surfaces I: stable case

On a polarised surface, solutions of the Vafa-Witten equations correspond to certain polystable Higgs pairs. When stability and semistability coincide, the moduli space admits a symmetric obstruction theory and a $ \mathbb{C}^*$ action with compact fixed locus. Applying virtual localisation we defin...

Full description

Bibliographic Details
Main Authors: Tanaka, Y, Thomas, RP
Format: Journal article
Language:English
Published: American Mathematical Society 2019
_version_ 1797108907647172608
author Tanaka, Y
Thomas, RP
author_facet Tanaka, Y
Thomas, RP
author_sort Tanaka, Y
collection OXFORD
description On a polarised surface, solutions of the Vafa-Witten equations correspond to certain polystable Higgs pairs. When stability and semistability coincide, the moduli space admits a symmetric obstruction theory and a $ \mathbb{C}^*$ action with compact fixed locus. Applying virtual localisation we define invariants constant under deformations. When the vanishing theorem of Vafa-Witten holds, the result is the (signed) Euler characteristic of the moduli space of instantons. In general there are other, rational, contributions. Calculations of these on surfaces with positive canonical bundle recover the first terms of modular forms predicted by Vafa and Witten.
first_indexed 2024-03-07T07:34:36Z
format Journal article
id oxford-uuid:38a2db78-54db-414a-8161-23e14c3ef2d3
institution University of Oxford
language English
last_indexed 2024-03-07T07:34:36Z
publishDate 2019
publisher American Mathematical Society
record_format dspace
spelling oxford-uuid:38a2db78-54db-414a-8161-23e14c3ef2d32023-02-24T09:43:12ZVafa-Witten invariants for projective surfaces I: stable caseJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:38a2db78-54db-414a-8161-23e14c3ef2d3EnglishSymplectic Elements at OxfordAmerican Mathematical Society2019Tanaka, YThomas, RPOn a polarised surface, solutions of the Vafa-Witten equations correspond to certain polystable Higgs pairs. When stability and semistability coincide, the moduli space admits a symmetric obstruction theory and a $ \mathbb{C}^*$ action with compact fixed locus. Applying virtual localisation we define invariants constant under deformations. When the vanishing theorem of Vafa-Witten holds, the result is the (signed) Euler characteristic of the moduli space of instantons. In general there are other, rational, contributions. Calculations of these on surfaces with positive canonical bundle recover the first terms of modular forms predicted by Vafa and Witten.
spellingShingle Tanaka, Y
Thomas, RP
Vafa-Witten invariants for projective surfaces I: stable case
title Vafa-Witten invariants for projective surfaces I: stable case
title_full Vafa-Witten invariants for projective surfaces I: stable case
title_fullStr Vafa-Witten invariants for projective surfaces I: stable case
title_full_unstemmed Vafa-Witten invariants for projective surfaces I: stable case
title_short Vafa-Witten invariants for projective surfaces I: stable case
title_sort vafa witten invariants for projective surfaces i stable case
work_keys_str_mv AT tanakay vafawitteninvariantsforprojectivesurfacesistablecase
AT thomasrp vafawitteninvariantsforprojectivesurfacesistablecase