Vafa-Witten invariants for projective surfaces I: stable case
On a polarised surface, solutions of the Vafa-Witten equations correspond to certain polystable Higgs pairs. When stability and semistability coincide, the moduli space admits a symmetric obstruction theory and a $ \mathbb{C}^*$ action with compact fixed locus. Applying virtual localisation we defin...
Hlavní autoři: | Tanaka, Y, Thomas, RP |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
American Mathematical Society
2019
|
Podobné jednotky
-
Vafa-Witten invariants for projective surfaces II: semistable case
Autor: Tanaka, Y, a další
Vydáno: (2018) -
On the singular sets of solutions to the Kapustin–Witten equations and the Vafa–Witten ones on compact Kähler surfaces
Autor: Tanaka, Y
Vydáno: (2018) -
Some boundedness properties of solutions to the Vafa–Witten equations on closed 4-manifolds
Autor: Tanaka, Y
Vydáno: (2017) -
A perturbation and generic smoothness of the Vafa-Witten moduli spaces on closed symplectic four-manifolds
Autor: Tanaka, Y
Vydáno: (2018) -
Stable pairs and Gopakumar–Vafa type invariants for Calabi–Yau 4-folds
Autor: Cao, Yalong, a další
Vydáno: (2022)