Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms
We propose a novel class of algorithms for low rank matrix completion. Our approach builds on novel penalty functions on the singular values of the low rank matrix. By exploiting a mixture model representation of this penalty, we show that a suitably chosen set of latent variables enables to derive...
Päätekijät: | Todeschini, A, Caron, F, Chavent, M |
---|---|
Aineistotyyppi: | Conference item |
Julkaistu: |
Neural information processing systems foundation
2013
|
Samankaltaisia teoksia
-
Matrix completion with nonconvex regularization: spectral operators and scalable algorithms
Tekijä: Mazumder, Rahul, et al.
Julkaistu: (2021) -
Low rank matrix completion
Tekijä: Nan, Feng, S.M. Massachusetts Institute of Technology
Julkaistu: (2010) -
The algorithm research of low-rank matrix spectral reconstruction for ground targets
Tekijä: Jiakun Zhang, et al.
Julkaistu: (2023-09-01) -
Survey on Probabilistic Models of Low-Rank Matrix Factorizations
Tekijä: Jiarong Shi, et al.
Julkaistu: (2017-08-01) -
Tensor Completion via Smooth Rank Function Low-Rank Approximate Regularization
Tekijä: Shicheng Yu, et al.
Julkaistu: (2023-08-01)