Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms
We propose a novel class of algorithms for low rank matrix completion. Our approach builds on novel penalty functions on the singular values of the low rank matrix. By exploiting a mixture model representation of this penalty, we show that a suitably chosen set of latent variables enables to derive...
المؤلفون الرئيسيون: | Todeschini, A, Caron, F, Chavent, M |
---|---|
التنسيق: | Conference item |
منشور في: |
Neural information processing systems foundation
2013
|
مواد مشابهة
-
Matrix completion with nonconvex regularization: spectral operators and scalable algorithms
حسب: Mazumder, Rahul, وآخرون
منشور في: (2021) -
Low rank matrix completion
حسب: Nan, Feng, S.M. Massachusetts Institute of Technology
منشور في: (2010) -
The algorithm research of low-rank matrix spectral reconstruction for ground targets
حسب: Jiakun Zhang, وآخرون
منشور في: (2023-09-01) -
Survey on Probabilistic Models of Low-Rank Matrix Factorizations
حسب: Jiarong Shi, وآخرون
منشور في: (2017-08-01) -
Tensor Completion via Smooth Rank Function Low-Rank Approximate Regularization
حسب: Shicheng Yu, وآخرون
منشور في: (2023-08-01)