A new method to quantify the real supply of mafic components to a hybrid andesite

The eruption of Soufrière Hills Volcano, Montserrat, has been ongoing since 1995. The volcano is erupting a crystal-rich hornblende-plagioclase andesite with ubiquitous mafic inclusions, indicating mixing with mafic magma. This mafic magma is thought to be the driving force of the eruption, supplyin...

Full description

Bibliographic Details
Main Authors: Humphreys, M, Edmonds, M, Plail, M, Barclay, J, Parkes, D, Christopher, T
Format: Journal article
Language:English
Published: 2013
_version_ 1826267570240487424
author Humphreys, M
Edmonds, M
Plail, M
Barclay, J
Parkes, D
Christopher, T
author_facet Humphreys, M
Edmonds, M
Plail, M
Barclay, J
Parkes, D
Christopher, T
author_sort Humphreys, M
collection OXFORD
description The eruption of Soufrière Hills Volcano, Montserrat, has been ongoing since 1995. The volcano is erupting a crystal-rich hornblende-plagioclase andesite with ubiquitous mafic inclusions, indicating mixing with mafic magma. This mafic magma is thought to be the driving force of the eruption, supplying heat and volatiles to the andesite resident in the magma chamber. As well as producing macroscopic mafic inclusions, the magma mixing process involves incorporation of phenocrysts from the andesite into the mafic magma. These inherited phenocrysts show clear disequilibrium textures (e. g. sieved plagioclase rims and thermal breakdown rims on hornblende). Approximately 25 % of all phenocrysts in the andesite show these textures, indicating very extensive mass transfer between the two magma types. Fragments of mafic inclusions down to sub-mm scale are found in the andesite, together with mafic crystal clusters, which are commonly found adhered to the rims of phenocrysts with disequilibrium features. Mineral chemistry also points to the transfer of microlites or microphenocrysts, initially formed in the mafic inclusions, into the andesite. This combined evidence suggests that some of the mafic inclusions disaggregate during mingling and/or ascent, possibly due to shearing, and raises the question: What proportion of the andesite 'groundmass' actually originated in the mafic inclusions, and thus, what is the true amount of mafic magma in the magmatic system? We present a new method for quantifying the relative proportions of groundmass plagioclase derived from mafic and andesitic magma, based on analysis of back-scattered electron images of the groundmass. Preliminary results indicate that approximately 16 % of all groundmass plagioclase belongs genetically to the mafic inclusions. Together with the crystal clusters, disequilibrium phenocryst textures and mm-scale inclusions, there is a 'cryptic' mafic component in the andesite of approximately 6 % by volume. This is significant compared with the proportion of macroscopic mafic inclusions (typically ~ 1-5 %). The new method has the potential to allow tracking of the mafic fraction through time and thus to yield further insights into magma hybridisation processes. © 2012 Springer-Verlag.
first_indexed 2024-03-06T20:56:13Z
format Journal article
id oxford-uuid:395d42c5-fb3d-4030-a890-16dbf790bf70
institution University of Oxford
language English
last_indexed 2024-03-06T20:56:13Z
publishDate 2013
record_format dspace
spelling oxford-uuid:395d42c5-fb3d-4030-a890-16dbf790bf702022-03-26T13:54:59ZA new method to quantify the real supply of mafic components to a hybrid andesiteJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:395d42c5-fb3d-4030-a890-16dbf790bf70EnglishSymplectic Elements at Oxford2013Humphreys, MEdmonds, MPlail, MBarclay, JParkes, DChristopher, TThe eruption of Soufrière Hills Volcano, Montserrat, has been ongoing since 1995. The volcano is erupting a crystal-rich hornblende-plagioclase andesite with ubiquitous mafic inclusions, indicating mixing with mafic magma. This mafic magma is thought to be the driving force of the eruption, supplying heat and volatiles to the andesite resident in the magma chamber. As well as producing macroscopic mafic inclusions, the magma mixing process involves incorporation of phenocrysts from the andesite into the mafic magma. These inherited phenocrysts show clear disequilibrium textures (e. g. sieved plagioclase rims and thermal breakdown rims on hornblende). Approximately 25 % of all phenocrysts in the andesite show these textures, indicating very extensive mass transfer between the two magma types. Fragments of mafic inclusions down to sub-mm scale are found in the andesite, together with mafic crystal clusters, which are commonly found adhered to the rims of phenocrysts with disequilibrium features. Mineral chemistry also points to the transfer of microlites or microphenocrysts, initially formed in the mafic inclusions, into the andesite. This combined evidence suggests that some of the mafic inclusions disaggregate during mingling and/or ascent, possibly due to shearing, and raises the question: What proportion of the andesite 'groundmass' actually originated in the mafic inclusions, and thus, what is the true amount of mafic magma in the magmatic system? We present a new method for quantifying the relative proportions of groundmass plagioclase derived from mafic and andesitic magma, based on analysis of back-scattered electron images of the groundmass. Preliminary results indicate that approximately 16 % of all groundmass plagioclase belongs genetically to the mafic inclusions. Together with the crystal clusters, disequilibrium phenocryst textures and mm-scale inclusions, there is a 'cryptic' mafic component in the andesite of approximately 6 % by volume. This is significant compared with the proportion of macroscopic mafic inclusions (typically ~ 1-5 %). The new method has the potential to allow tracking of the mafic fraction through time and thus to yield further insights into magma hybridisation processes. © 2012 Springer-Verlag.
spellingShingle Humphreys, M
Edmonds, M
Plail, M
Barclay, J
Parkes, D
Christopher, T
A new method to quantify the real supply of mafic components to a hybrid andesite
title A new method to quantify the real supply of mafic components to a hybrid andesite
title_full A new method to quantify the real supply of mafic components to a hybrid andesite
title_fullStr A new method to quantify the real supply of mafic components to a hybrid andesite
title_full_unstemmed A new method to quantify the real supply of mafic components to a hybrid andesite
title_short A new method to quantify the real supply of mafic components to a hybrid andesite
title_sort new method to quantify the real supply of mafic components to a hybrid andesite
work_keys_str_mv AT humphreysm anewmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT edmondsm anewmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT plailm anewmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT barclayj anewmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT parkesd anewmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT christophert anewmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT humphreysm newmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT edmondsm newmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT plailm newmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT barclayj newmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT parkesd newmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite
AT christophert newmethodtoquantifytherealsupplyofmaficcomponentstoahybridandesite