EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python

The Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature anal...

Full description

Bibliographic Details
Main Authors: Quinn, AJ, Lopes Dos Santos, V, Dupret, D, De Ozorio Nobre, A, Woolrich, M
Format: Journal article
Language:English
Published: Open Journals 2021
_version_ 1826267606413213696
author Quinn, AJ
Lopes Dos Santos, V
Dupret, D
De Ozorio Nobre, A
Woolrich, M
author_facet Quinn, AJ
Lopes Dos Santos, V
Dupret, D
De Ozorio Nobre, A
Woolrich, M
author_sort Quinn, AJ
collection OXFORD
description The Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature analysis. These implementations are supported by online documentation containing a range of practical tutorials.
first_indexed 2024-03-06T20:56:46Z
format Journal article
id oxford-uuid:3986f4b9-1402-4e0e-aa47-4090230a0671
institution University of Oxford
language English
last_indexed 2024-03-06T20:56:46Z
publishDate 2021
publisher Open Journals
record_format dspace
spelling oxford-uuid:3986f4b9-1402-4e0e-aa47-4090230a06712022-03-26T13:56:06ZEMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in PythonJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3986f4b9-1402-4e0e-aa47-4090230a0671EnglishSymplectic ElementsOpen Journals2021Quinn, AJLopes Dos Santos, VDupret, DDe Ozorio Nobre, AWoolrich, MThe Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature analysis. These implementations are supported by online documentation containing a range of practical tutorials.
spellingShingle Quinn, AJ
Lopes Dos Santos, V
Dupret, D
De Ozorio Nobre, A
Woolrich, M
EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python
title EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python
title_full EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python
title_fullStr EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python
title_full_unstemmed EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python
title_short EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python
title_sort emd empirical mode decomposition and hilbert huang spectral analyses in python
work_keys_str_mv AT quinnaj emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython
AT lopesdossantosv emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython
AT dupretd emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython
AT deozorionobrea emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython
AT woolrichm emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython