EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python
The Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature anal...
Main Authors: | , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Open Journals
2021
|
_version_ | 1826267606413213696 |
---|---|
author | Quinn, AJ Lopes Dos Santos, V Dupret, D De Ozorio Nobre, A Woolrich, M |
author_facet | Quinn, AJ Lopes Dos Santos, V Dupret, D De Ozorio Nobre, A Woolrich, M |
author_sort | Quinn, AJ |
collection | OXFORD |
description | The Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature analysis. These implementations are supported by online documentation containing a range of practical tutorials. |
first_indexed | 2024-03-06T20:56:46Z |
format | Journal article |
id | oxford-uuid:3986f4b9-1402-4e0e-aa47-4090230a0671 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T20:56:46Z |
publishDate | 2021 |
publisher | Open Journals |
record_format | dspace |
spelling | oxford-uuid:3986f4b9-1402-4e0e-aa47-4090230a06712022-03-26T13:56:06ZEMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in PythonJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3986f4b9-1402-4e0e-aa47-4090230a0671EnglishSymplectic ElementsOpen Journals2021Quinn, AJLopes Dos Santos, VDupret, DDe Ozorio Nobre, AWoolrich, MThe Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature analysis. These implementations are supported by online documentation containing a range of practical tutorials. |
spellingShingle | Quinn, AJ Lopes Dos Santos, V Dupret, D De Ozorio Nobre, A Woolrich, M EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python |
title | EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python |
title_full | EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python |
title_fullStr | EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python |
title_full_unstemmed | EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python |
title_short | EMD: Empirical Mode Decomposition and Hilbert-Huang spectral analyses in Python |
title_sort | emd empirical mode decomposition and hilbert huang spectral analyses in python |
work_keys_str_mv | AT quinnaj emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython AT lopesdossantosv emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython AT dupretd emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython AT deozorionobrea emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython AT woolrichm emdempiricalmodedecompositionandhilberthuangspectralanalysesinpython |