The interpretation of vibrational spectra of ionic melts

Computer simulations of the short-time, vibrational dynamics of the network-forming ionic melts, LaCl3 and ZnCl2, and of their mixtures with network-breaking alkali halides are described. In the mixtures, high frequency peaks in the vibrational density of states are shown to be describable in terms...

Full description

Bibliographic Details
Main Authors: Pavlatou, E, Madden, P, Wilson, M
Format: Journal article
Language:English
Published: 1997
_version_ 1797063232405372928
author Pavlatou, E
Madden, P
Wilson, M
author_facet Pavlatou, E
Madden, P
Wilson, M
author_sort Pavlatou, E
collection OXFORD
description Computer simulations of the short-time, vibrational dynamics of the network-forming ionic melts, LaCl3 and ZnCl2, and of their mixtures with network-breaking alkali halides are described. In the mixtures, high frequency peaks in the vibrational density of states are shown to be describable in terms of the normal coordinates of vibration of transient molecular ion species, like LaCl63- and ZnCl42- . Novel simulation methods are presented which allow this association to be established. In the pure melts, the vibrational motions retain a strong aspect of this local polyhedral unit vibrational character, but the effects of network-induced coupling between the vibrations of different units become pronounced, particularly in ZnCl2. The calculated vibrational spectra are compared with extensive Raman data on these systems, and with infrared and neutron spectra in pure ZnCl2. For the mixtures, remarkably good agreement with experiment is found, confirming the high quality of the representation of the interionic interactions obtained with the polarizable ion model potentials used. For the melts, there are discrepancies between the peak frequencies observed in the vibrational DOS and the Raman spectra. These discrepancies are likely to be due to the network-induced couplings, whose effect on the Raman (and infrared) spectra is not fully included in the calculated DOS. © 1997 American Institute of Physics.
first_indexed 2024-03-06T20:56:52Z
format Journal article
id oxford-uuid:398e8ade-6765-49d4-8c34-78c3b775a554
institution University of Oxford
language English
last_indexed 2024-03-06T20:56:52Z
publishDate 1997
record_format dspace
spelling oxford-uuid:398e8ade-6765-49d4-8c34-78c3b775a5542022-03-26T13:56:14ZThe interpretation of vibrational spectra of ionic meltsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:398e8ade-6765-49d4-8c34-78c3b775a554EnglishSymplectic Elements at Oxford1997Pavlatou, EMadden, PWilson, MComputer simulations of the short-time, vibrational dynamics of the network-forming ionic melts, LaCl3 and ZnCl2, and of their mixtures with network-breaking alkali halides are described. In the mixtures, high frequency peaks in the vibrational density of states are shown to be describable in terms of the normal coordinates of vibration of transient molecular ion species, like LaCl63- and ZnCl42- . Novel simulation methods are presented which allow this association to be established. In the pure melts, the vibrational motions retain a strong aspect of this local polyhedral unit vibrational character, but the effects of network-induced coupling between the vibrations of different units become pronounced, particularly in ZnCl2. The calculated vibrational spectra are compared with extensive Raman data on these systems, and with infrared and neutron spectra in pure ZnCl2. For the mixtures, remarkably good agreement with experiment is found, confirming the high quality of the representation of the interionic interactions obtained with the polarizable ion model potentials used. For the melts, there are discrepancies between the peak frequencies observed in the vibrational DOS and the Raman spectra. These discrepancies are likely to be due to the network-induced couplings, whose effect on the Raman (and infrared) spectra is not fully included in the calculated DOS. © 1997 American Institute of Physics.
spellingShingle Pavlatou, E
Madden, P
Wilson, M
The interpretation of vibrational spectra of ionic melts
title The interpretation of vibrational spectra of ionic melts
title_full The interpretation of vibrational spectra of ionic melts
title_fullStr The interpretation of vibrational spectra of ionic melts
title_full_unstemmed The interpretation of vibrational spectra of ionic melts
title_short The interpretation of vibrational spectra of ionic melts
title_sort interpretation of vibrational spectra of ionic melts
work_keys_str_mv AT pavlatoue theinterpretationofvibrationalspectraofionicmelts
AT maddenp theinterpretationofvibrationalspectraofionicmelts
AT wilsonm theinterpretationofvibrationalspectraofionicmelts
AT pavlatoue interpretationofvibrationalspectraofionicmelts
AT maddenp interpretationofvibrationalspectraofionicmelts
AT wilsonm interpretationofvibrationalspectraofionicmelts