Approximately Efficient Two-Sided Combinatorial Auctions

We develop and extend a line of recent work on the design of mechanisms for two-sided markets. Œe markets we consider consist of buyers and sellers of a number of items, and the aim of a mechanism is to improve the social welfare by arranging purchases and sales of the items. A mechanism is given pr...

Full description

Bibliographic Details
Main Authors: Colini-Baldeschi, R, Goldberg, P, De Keijzer, B, Leonardi, S, Roughgarden, T, Turchetta, S
Format: Conference item
Published: Association for Computing Machinery 2017
Description
Summary:We develop and extend a line of recent work on the design of mechanisms for two-sided markets. Œe markets we consider consist of buyers and sellers of a number of items, and the aim of a mechanism is to improve the social welfare by arranging purchases and sales of the items. A mechanism is given prior distributions on the agents’ valuations of the items, but not the actual valuations; thus the aim is to maximise the expected social welfare over these distributions. As in previous work, we are interested in the worst-case ratio between the social welfare achieved by a truthful mechanism, and the best social welfare possible. <br/> Our main result is an incentive compatible and budget balanced constant-factor approximation mechanism in a setting where buyers have XOS valuations and sellers’ valuations are additive. This is the €rst such approximation mechanism for a two-sided market setting where the agents have combinatorial valuation functions. To achieve this result, we introduce a more general kind of demand query that seems to be needed in this situation. In the simpler case that sellers have unit supply (each having just one item to sell), we give a new mechanism whose welfare guarantee improves on a recent one in the literature. We also introduce a more demanding version of the strong budget balance (SBB) criterion, aimed at ruling out certain “unnatural” transactions satis€ed by SBB. We show that the stronger version is satis€ed by our mechanisms.