Toward Practical N2 Monte Carlo: the Marginal Particle Filter
Sequential Monte Carlo techniques are useful for state estimation in non-linear, non-Gaussian dynamic models. These methods allow us to approximate the joint posterior distribution using sequential importance sampling. In this framework, the dimension of the target distribution grows with each time...
Auteurs principaux: | Klaas, M, de Freitas, N, Doucet, A |
---|---|
Format: | Conference item |
Publié: |
AUAI Press
2005
|
Documents similaires
-
Toward practical N2 Monte Carlo: The Marginal Particle Filter
par: Klaas, M, et autres
Publié: (2005) -
Pseudo-marginal Hamiltonian Monte Carlo
par: Alenlov, J, et autres
Publié: (2021) -
Maximum a posteriori sequence estimation using Monte Carlo particle filters
par: Godsill, S, et autres
Publié: (2001) -
On sequential Monte Carlo sampling methods for Bayesian filtering
par: Doucet, A, et autres
Publié: (2000) -
Particle Markov chain Monte Carlo methods
par: Andrieu, C, et autres
Publié: (2010)