An analysis of convex relaxations for MAP estimation
The problem of obtaining the maximum a posteriori estimate of a general discrete random field (i.e. a random field defined using a finite and discrete set of labels) is known to be NP-hard. However, due to its central importance in many applications, several approximate algorithms have been proposed...
Main Authors: | Kumar, MP, Kolmogorov, V, Torr, PHS |
---|---|
格式: | Conference item |
语言: | English |
出版: |
Curran Associates
2008
|
相似书籍
-
Analyzing convex relaxations for map estimation
由: Kumar, MP, et al.
出版: (2011) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
由: Pawan Kumar, M, et al.
出版: (2009) -
Efficiently solving convex relaxations for MAP estimation
由: Kumar, MP, et al.
出版: (2008) -
Improved moves for truncated convex models
由: Kumar, MP, et al.
出版: (2009) -
Solving Markov random fields using second order cone programming relaxations
由: Kumar, MP, et al.
出版: (2006)